Download PDF by KennyFelder: Advanced Algebra II: Activities and Homework

By KennyFelder

Show description

Read Online or Download Advanced Algebra II: Activities and Homework PDF

Similar algebra books

Download PDF by James E. Humphreys: Introduction to Lie Algebras and Representation Theory

This publication is designed to introduce the reader to the idea of semisimple Lie algebras over an algebraically closed box of attribute zero, with emphasis on representations. a very good wisdom of linear algebra (including eigenvalues, bilinear varieties, Euclidean areas, and tensor items of vector areas) is presupposed, in addition to a few acquaintance with the equipment of summary algebra.

Download e-book for kindle: Ueber Riemanns Theorie der Algebraischen Functionen by Felix Klein

"Excerpt from the ebook. .. "
Hier wird guy nun _u_ als _Geschwindigkeitspotential_ deuten, so dass
[formula] [formula] die Componenten der Geschwindigkeit sind, mit der eine
Flüssigkeit parallel zur [formula]-Ebene strömt. Wir mögen uns diese
Flüssigkeit zwischen zwei Ebenen eingeschlossen denken, die parallel zur
[formula]-Ebene verlaufen, oder auch uns vorstellen, dass die Flüssigkeit
als unendlich dünn

Download e-book for iPad: Lie Groups and Lie Algebras II by B.L. Feigin (Contributor), D.B. Fuchs (Contributor), V.V.

A scientific survey of all of the simple effects at the concept of discrete subgroups of Lie teams, provided in a handy shape for clients. The booklet makes the speculation available to a large viewers, and should be a typical reference for a few years to return.

Extra info for Advanced Algebra II: Activities and Homework

Sample text

T ✐s♥✬t ❛❧r❡❛❞② ✐♥ t❤❛t ❢♦r♠✮ ■❞❡♥t✐❢② t❤❡ s❧♦♣❡ ■❞❡♥t✐❢② t❤❡ y ✲✐♥t❡r❝❡♣t✱ ❛♥❞ ❣r❛♣❤ ✐t ❯s❡ t❤❡ s❧♦♣❡ t♦ ✜♥❞ ♦♥❡ ♣♦✐♥t ♦t❤❡r t❤❛♥ t❤❡ ●r❛♣❤ t❤❡ ❧✐♥❡ ❊①❡r❝✐s❡ ✶✳✺✺ y = 3x − 2 ❙❧♦♣❡✿❴❴❴❴❴❴❴❴❴❴❴ y ✲✐♥t❡r❝❡♣t✿❴❴❴❴❴❴❴❴❴❴❴ ❖t❤❡r ♣♦✐♥t✿❴❴❴❴❴❴❴❴❴❴❴ ❊①❡r❝✐s❡ ✶✳✺✻ 2y − x = 4 ❊q✉❛t✐♦♥ ✐♥ y = ♠① + b y ✲✐♥t❡r❝❡♣t ♦♥ t❤❡ ❧✐♥❡ ✷✾ ❙❧♦♣❡✿❴❴❴❴❴❴❴❴❴❴❴ n✲✐♥t❡r❝❡♣t✿❴❴❴❴❴❴❴❴❴❴❴ ❖t❤❡r ♣♦✐♥t✿❴❴❴❴❴❴❴❴❴❴❴ ✶✸ ✶✳✶✸ ❍♦♠❡✇♦r❦✿ ●r❛♣❤✐♥❣ ▲✐♥❡s ❊①❡r❝✐s❡ ✶✳✺✼ 2y + 7x + 3 = 0 ❛✳ ❜✳ ❝✳ ❞✳ ❡✳ ✐s t❤❡ ❡q✉❛t✐♦♥ ❢♦r ❛ ❧✐♥❡✳ P✉t t❤✐s ❡q✉❛t✐♦♥ ✐♥t♦ t❤❡ ✏s❧♦♣❡✲✐♥t❡r❝❡♣t✑ ❢♦r♠ y = ♠① + b s❧♦♣❡ ❂ ❴❴❴❴❴❴❴❴❴❴❴ ②✲✐♥t❡r❝❡♣t ❂ ❴❴❴❴❴❴❴❴❴❴❴ ①✲✐♥t❡r❝❡♣t ❂ ❴❴❴❴❴❴❴❴❴❴❴ ●r❛♣❤ ✐t✳ ❊①❡r❝✐s❡ ✶✳✺✽ ❚❤❡ ♣♦✐♥ts (5, 2) ❛♥❞ (7, 8) ❧✐❡ ♦♥ ❛ ❧✐♥❡✳ ❛✳ ❋✐♥❞ t❤❡ s❧♦♣❡ ♦❢ t❤✐s ❧✐♥❡ ❜✳ ❋✐♥❞ ❛♥♦t❤❡r ♣♦✐♥t ♦♥ t❤✐s ❧✐♥❡ ❊①❡r❝✐s❡ ✶✳✺✾ ❲❤❡♥ ②♦✉✬r❡ ❜✉✐❧❞✐♥❣ ❛ r♦♦❢✱ ②♦✉ ♦❢t❡♥ t❛❧❦ ❛❜♦✉t t❤❡ ✏♣✐t❝❤✑ ♦❢ t❤❡ r♦♦❢✖✇❤✐❝❤ ✐s ❛ ❢❛♥❝② ✇♦r❞ t❤❛t ♠❡❛♥s ✐ts s❧♦♣❡✳ ❨♦✉ ❛r❡ ❜✉✐❧❞✐♥❣ ❛ r♦♦❢ s❤❛♣❡❞ ❧✐❦❡ t❤❡ ❢♦❧❧♦✇✐♥❣✳ ❚❤❡ r♦♦❢ ✐s ♣❡r❢❡❝t❧② s②♠♠❡tr✐❝❛❧✳ ❚❤❡ s❧♦♣❡ ♦❢ t❤❡ ❧❡❢t✲❤❛♥❞ s✐❞❡ ✐s ✳ ■♥ t❤❡ ❞r❛✇✐♥❣ ❜❡❧♦✇✱ t❤❡ r♦♦❢ ✐s t❤❡ t✇♦ t❤✐❝❦ ❜❧❛❝❦ ❧✐♥❡s✖t❤❡ ❝❡✐❧✐♥❣ ♦❢ t❤❡ ❤♦✉s❡ ✐s t❤❡ ❞♦tt❡❞ ❧✐♥❡ ✻✵✬ ❧♦♥❣✳ ❋✐❣✉r❡ ✶✳✷✸ ❛✳ ❲❤❛t ✐s t❤❡ s❧♦♣❡ ♦❢ t❤❡ r✐❣❤t✲❤❛♥❞ s✐❞❡ ♦❢ t❤❡ r♦♦❢ ❄ ❜✳ ❍♦✇ ❤✐❣❤ ✐s t❤❡ r♦♦❢ ❄ ❚❤❛t ✐s✱ ✇❤❛t ✐s t❤❡ ❞✐st❛♥❝❡ ❢r♦♠ t❤❡ ❝❡✐❧✐♥❣ ♦❢ t❤❡ ❤♦✉s❡✱ str❛✐❣❤t ✉♣ t♦ t❤❡ ♣♦✐♥t ❛t t❤❡ t♦♣ ♦❢ t❤❡ r♦♦❢ ❄ ❝✳ ❍♦✇ ❧♦♥❣ ✐s t❤❡ r♦♦❢ ❄ ❚❤❛t ✐s✱ ✇❤❛t ✐s t❤❡ ❝♦♠❜✐♥❡❞ ❧❡♥❣t❤ ♦❢ t❤❡ t✇♦ t❤✐❝❦ ❜❧❛❝❦ ❧✐♥❡s ✐♥ t❤❡ ❞r❛✇✐♥❣ ❛❜♦✈❡❄ ❊①❡r❝✐s❡ ✶✳✻✵ y = 3x✱ ❡①♣❧❛✐♥ ✇❤② ✸ ✐s t❤❡ s❧♦♣❡✳ ✭❉♦♥✬t ❥✉st s❛② ✏❜❡❝❛✉s❡ ✐t✬s t❤❡ m + b✳✑ ❊①♣❧❛✐♥ ✇❤② ∆y ∆x ✇✐❧❧ ❜❡ ✸ ❢♦r ❛♥② t✇♦ ♣♦✐♥ts ♦♥ t❤✐s ❧✐♥❡✱ ❥✉st ❧✐❦❡ ✇❡ ❡①♣❧❛✐♥❡❞ ✇❤② b ✐s t❤❡ ②✲✐♥t❡r❝❡♣t✳✮ ■♥ t❤❡ ❡q✉❛t✐♦♥ y= ♠① ❝❧❛ss ✶✸ ❚❤✐s ❝♦♥t❡♥t ✐s ❛✈❛✐❧❛❜❧❡ ♦♥❧✐♥❡ ❛t ❁❤tt♣✿✴✴❝♥①✳♦r❣✴❝♦♥t❡♥t✴♠✶✾✶✶✽✴✶✳✷✴❃✳ ✐♥ ✐♥ ❈❍❆P❚❊❘ ✶✳ ❋❯◆❈❚■❖◆❙ ✸✵ ❊①❡r❝✐s❡ ✶✳✻✶ ❍♦✇ ❞♦ ②♦✉ ♠❡❛s✉r❡ t❤❡ ❤❡✐❣❤t ♦❢ ❛ ✈❡r② t❛❧❧ ♠♦✉♥t❛✐♥❄ ❨♦✉ ❝❛♥✬t ❥✉st s✐♥❦ ❛ r✉❧❡r ❞♦✇♥ ❢r♦♠ t❤❡ t♦♣ t♦ t❤❡ ❜♦tt♦♠ ♦❢ t❤❡ ♠♦✉♥t❛✐♥✦ ❙♦ ❤❡r❡✬s ♦♥❡ ✇❛② ②♦✉ ❝♦✉❧❞ ❞♦ ✐t✳ ❨♦✉ st❛♥❞ ❜❡❤✐♥❞ ❛ tr❡❡✱ ❛♥❞ ②♦✉ ♠♦✈❡ ❜❛❝❦ ✉♥t✐❧ ②♦✉ ❝❛♥ ❧♦♦❦ str❛✐❣❤t ♦✈❡r t❤❡ t♦♣ ♦❢ t❤❡ tr❡❡✱ t♦ t❤❡ t♦♣ ♦❢ t❤❡ ♠♦✉♥t❛✐♥✳ ❚❤❡♥ ②♦✉ ♠❡❛s✉r❡ t❤❡ ❤❡✐❣❤t ♦❢ t❤❡ tr❡❡✱ t❤❡ ❞✐st❛♥❝❡ ❢r♦♠ ②♦✉ t♦ t❤❡ ♠♦✉♥t❛✐♥✱ ❛♥❞ t❤❡ ❞✐st❛♥❝❡ ❢r♦♠ ②♦✉ t♦ t❤❡ tr❡❡✳ ❙♦ ②♦✉ ♠✐❣❤t ❣❡t r❡s✉❧ts ❧✐❦❡ t❤✐s✳ ❋✐❣✉r❡ ✶✳✷✹ ❍♦✇ ❤✐❣❤ ✐s t❤❡ ♠♦✉♥t❛✐♥❄ ❊①❡r❝✐s❡ ✶✳✻✷ ❚❤❡ ❢♦❧❧♦✇✐♥❣ t❛❜❧❡ ✭❛ ✏r❡❧❛t✐♦♥✱✑ r❡♠❡♠❜❡r t❤♦s❡❄✮ s❤♦✇s ❤♦✇ ♠✉❝❤ ♠♦♥❡② ❙❝r♦♦❣❡ ▼❝❉✉❝❦ ❤❛s ❜❡❡♥ ✇♦rt❤ ❡✈❡r② ②❡❛r s✐♥❝❡ ✶✾✾✾✳ ❨❡❛r ✶✾✾✾ ✷✵✵✵ ✷✵✵✶ ✷✵✵✷ ✷✵✵✸ ✷✵✵✹ ◆❡t ❲♦rt❤ ✩✸ ❚r✐❧❧✐♦♥ ✩✹✳✺ ❚r✐❧❧✐♦♥ ✩✻ ❚r✐❧❧✐♦♥ ✩✼✳✺ ❚r✐❧❧✐♦♥ ✩✾ ❚r✐❧❧✐♦♥ ✩✶✵✳✺ ❚r✐❧❧✐♦♥ ❚❛❜❧❡ ✶✳✽ ❛✳ ❜✳ ❝✳ ❞✳ ❍♦✇ ♠✉❝❤ ✐s ❛ tr✐❧❧✐♦♥✱ ❛♥②✇❛②❄ ●r❛♣❤ t❤✐s r❡❧❛t✐♦♥✳ ❲❤❛t ✐s t❤❡ s❧♦♣❡ ♦❢ t❤❡ ❣r❛♣❤❄ ❍♦✇ ♠✉❝❤ ♠♦♥❡② ❝❛♥ ▼r✳ ▼❝❉✉❝❦ ❡❛r♥ ✐♥ ✷✵ ②❡❛rs ❛t t❤✐s r❛t❡❄ ❊①❡r❝✐s❡ ✶✳✻✸ ▼❛❦❡ ✉♣ ❛♥❞ s♦❧✈❡ ②♦✉r ♦✇♥ ✇♦r❞ ♣r♦❜❧❡♠ ✉s✐♥❣ s❧♦♣❡✳ ✸✶ ✶✳✶✹ ❈♦♠♣♦s✐t❡ ❋✉♥❝t✐♦♥s ✶✹ ❊①❡r❝✐s❡ ✶✳✻✹ ❨♦✉ ❛r❡ t❤❡ ❢♦r❡♠❛♥ ❛t t❤❡ ❙❡s❛♠❡ ❙tr❡❡t ◆✉♠❜❡r ❋❛❝t♦r②✳ ❆ ❤✉❣❡ ❝♦♥✈❡②♦r ❜❡❧t r♦❧❧s ❛❧♦♥❣✱ ❝♦✈❡r❡❞ ✇✐t❤ ❜✐❣ ♣❧❛st✐❝ ♥✉♠❜❡rs ❢♦r ♦✉r ❝✉st♦♠❡rs✳ ❨♦✉r t✇♦ ❜❡st ❡♠♣❧♦②❡❡s ❛r❡ ❑❛t✐❡ ❛♥❞ ◆✐❝♦❧❛s✳ ❇♦t❤ ♦❢ t❤❡♠ st❛♥❞ ❛t t❤❡✐r st❛t✐♦♥s ❜② t❤❡ ❝♦♥✈❡②♦r ❜❡❧t✳ ◆✐❝♦❧❛s✬s ❥♦❜ ✐s✿ ✇❤❛t❡✈❡r ♥✉♠❜❡r ❝♦♠❡s t♦ ②♦✉r st❛t✐♦♥✱ ❛❞❞ ✷ ❛♥❞ t❤❡♥ ♠✉❧t✐♣❧② ❜② ✺✱ ❛♥❞ s❡♥❞ ♦✉t t❤❡ r❡s✉❧t✐♥❣ ♥✉♠❜❡r✳ ❑❛t✐❡ ✐s s✉❜tr❛❝t ✶✵✱ ❛♥❞ s❡♥❞ t❤❡ r❡s✉❧t ♥❡①t ♦♥ t❤❡ ❧✐♥❡✳ ❍❡r ❥♦❜ ✐s✿ ✇❤❛t❡✈❡r ♥✉♠❜❡r ❝♦♠❡s t♦ ②♦✉✱ ❞♦✇♥ t❤❡ ❧✐♥❡ t♦ ❙❡s❛♠❡ ❙tr❡❡t✳ ❛✳ ❋✐❧❧ ✐♥ t❤❡ ❢♦❧❧♦✇✐♥❣ t❛❜❧❡✳ ❚❤✐s ♥✉♠❜❡r ❝♦♠❡s ❞♦✇♥ t❤❡ ❧✐♥❡ ✲✺ ✲✸ ✲✶ ✷ ✹ ✻ ✶✵ x 2x ◆✐❝♦❧❛s ❝♦♠❡s ✉♣ ✇✐t❤ t❤✐s ♥✉♠✲ ❜❡r✱ ❛♥❞ s❡♥❞s ✐t ❞♦✇♥ t❤❡ ❧✐♥❡ t♦ ❑❛t✐❡ ❑❛t✐❡ t❤❡♥ s♣✐ts ♦✉t t❤✐s ♥✉♠❜❡r ❚❛❜❧❡ ✶✳✾ ❜✳ ■♥ ❛ ♠❛ss✐✈❡ ❞♦✇♥s✐③✐♥❣ ❡✛♦rt✱ ②♦✉ ❛r❡ ❣♦✐♥❣ t♦ ✜r❡ ◆✐❝♦❧❛s✳ ❑❛t✐❡ ✐s ❣♦✐♥❣ t♦ t❛❦❡ ♦✈❡r ❜♦t❤ ❢✉♥❝t✐♦♥s ✭◆✐❝♦❧❛s✬s ❛♥❞ ❤❡r ♦✇♥✮✳ ❙♦ ②♦✉ ✇❛♥t t♦ ❣✐✈❡ ❑❛t✐❡ ❛ ♥✉♠❜❡r✱ ❛♥❞ s❤❡ ✜rst ❞♦❡s ◆✐❝♦❧❛s✬s ❢✉♥❝t✐♦♥✱ ❛♥❞ t❤❡♥ ❤❡r ♦✇♥✳ ❇✉t ♥♦✇ ❑❛t✐❡ ✐s ♦✈❡r✇♦r❦❡❞✱ s♦ s❤❡ ❝♦♠❡s ✉♣ ✇✐t❤ ❛ s❤♦rt❝✉t✿ ♦♥❡ ❢✉♥❝t✐♦♥ s❤❡ ❝❛♥ ❞♦✱ t❤❛t ❝♦✈❡rs ❜♦t❤ ◆✐❝♦❧❛s✬s ❥♦❜ ❛♥❞ ❤❡r ♦✇♥✳ ❲❤❛t ❞♦❡s ❑❛t✐❡ ❞♦ t♦ ❡❛❝❤ ♥✉♠❜❡r ②♦✉ ❣✐✈❡ ❤❡r❄ ✭❆♥s✇❡r ✐♥ ✇♦r❞s✳✮ ❊①❡r❝✐s❡ ✶✳✻✺ ❚❛②❧♦r ✐s ❞r✐✈✐♥❣ ❛ ♠♦t♦r❝②❝❧❡ ❛❝r♦ss t❤❡ ❝♦✉♥tr②✳ ❊❛❝❤ ❞❛② ❤❡ ❝♦✈❡rs ✺✵✵ ♠✐❧❡s✳ ❆ ♣♦❧✐❝❡♠❛♥ st❛rt❡❞ t❤❡ s❛♠❡ ♣❧❛❝❡ ❚❛②❧♦r ❞✐❞✱ ✇❛✐t❡❞ ❛ ✇❤✐❧❡✱ ❛♥❞ t❤❡♥ t♦♦❦ ♦✛✱ ❤♦♣✐♥❣ t♦ ❝❛t❝❤ s♦♠❡ ✐❧❧❡❣❛❧ ❛❝t✐✈✐t②✳ ❚❤❡ ♣♦❧✐❝❡♠❛♥ st♦♣s ❡❛❝❤ ❞❛② ❡①❛❝t❧② ✜✈❡ ♠✐❧❡s ❜❡❤✐♥❞ ❚❛②❧♦r✳ ▲❡t d ❡q✉❛❧ t❤❡ ♥✉♠❜❡r ♦❢ ❞❛②s t❤❡② ❤❛✈❡ ❜❡❡♥ ❞r✐✈✐♥❣✳ ✭❙♦ ❛❢t❡r t❤❡ ✜rst ❞❛②✱ d = 1✳✮ ▲❡t T ❜❡ p ❡q✉❛❧ t❤❡ ♥✉♠❜❡r ♦❢ ♠✐❧❡s t❤❡ ♣♦❧✐❝❡♠❛♥ ❤❛s ❞r✐✈❡♥✳ t❤❡ ♥✉♠❜❡r ♦❢ ♠✐❧❡s ❚❛②❧♦r ❤❛s ❞r✐✈❡♥✳ ▲❡t ❛✳ ❆❢t❡r t❤r❡❡ ❞❛②s✱ ❤♦✇ ❢❛r ❤❛s ❚❛②❧♦r ❣♦♥❡❄ ❴❴❴❴❴❴❴❴❴❴❴❴❴❴ ❜✳ ❍♦✇ ❢❛r ❤❛s t❤❡ ♣♦❧✐❝❡♠❛♥ ❣♦♥❡❄ ❴❴❴❴❴❴❴❴❴❴❴❴❴❴ ❝✳ ❲r✐t❡ ❛ ❢✉♥❝t✐♦♥ T (d) t❤❛t ❣✐✈❡s t❤❡ ♥✉♠❜❡r ♦❢ ♠✐❧❡s ❚❛②❧♦r ❤❛s tr❛✈❡❧❡❞✱ ❛s ❛ ❢✉♥❝t✐♦♥ ♦❢ ❤♦✇ ♠❛♥② ❞❛②s ❤❡ ❤❛s ❜❡❡♥ tr❛✈❡❧✐♥❣✳ ❴❴❴❴❴❴❴❴❴❴❴❴❴❴ ❞✳ ❲r✐t❡ ❛ ❢✉♥❝t✐♦♥ p (T ) t❤❛t ❣✐✈❡s t❤❡ ♥✉♠❜❡r ♦❢ ♠✐❧❡ t❤❡ ♣♦❧✐❝❡♠❛♥ ❤❛s tr❛✈❡❧❡❞✱ ❛s ❛ ❢✉♥❝t✐♦♥ ♦❢ t❤❡ ❞✐st❛♥❝❡ t❤❛t ❚❛②❧♦r ❤❛s tr❛✈❡❧❡❞✳ ❴❴❴❴❴❴❴❴❴❴❴❴❴❴ ❡✳ ◆♦✇ ✇r✐t❡ t❤❡ ❝♦♠♣♦s✐t❡ ❢✉♥❝t✐♦♥ p (T (d)) t❤❛t ❣✐✈❡s t❤❡ ♥✉♠❜❡r ♦❢ ♠✐❧❡s t❤❡ ♣♦❧✐❝❡✲ ♠❛♥ ❤❛s tr❛✈❡❧❡❞✱ ❛s ❛ ❢✉♥❝t✐♦♥ ♦❢ t❤❡ ♥✉♠❜❡r ♦❢ ❞❛②s ❤❡ ❤❛s ❜❡❡♥ tr❛✈❡❧✐♥❣✳ ❊①❡r❝✐s❡ ✶✳✻✻ ❘❛s❤♠✐ ✐s ❛ ❤♦♥♦r st✉❞❡♥t ❜② ❞❛②❀ ❜✉t ❜② ♥✐❣❤t✱ s❤❡ ✇♦r❦s ❛s ❛ ❤✐t ♠❛♥ ❢♦r t❤❡ ♠♦❜✳ ❊❛❝❤ ♠♦♥t❤ s❤❡ ❣❡ts ♣❛✐❞ ✩✶✵✵✵ ❜❛s❡✱ ♣❧✉s ❛♥ ❡①tr❛ ✩✶✵✵ ❢♦r ❡❛❝❤ ♣❡rs♦♥ s❤❡ ❦✐❧❧s✳ ❖❢ ❝♦✉rs❡✱ s❤❡ ❣❡ts ♣❛✐❞ ✐♥ ❝❛s❤✖❛❧❧ ✩✷✵ ❜✐❧❧s✳ ▲❡t k ❡q✉❛❧ t❤❡ ♥✉♠❜❡r ♦❢ ♣❡♦♣❧❡ ❘❛s❤♠✐ ❦✐❧❧s ✐♥ ❛ ❣✐✈❡♥ ♠♦♥t❤✳ ▲❡t ♠ ❜❡ t❤❡ ❛♠♦✉♥t ♦❢ ♠♦♥❡② s❤❡ ✐s ♣❛✐❞ t❤❛t ♠♦♥t❤✱ ✐♥ ❞♦❧❧❛rs✳ ▲❡t ✶✹ ❚❤✐s b ❜❡ t❤❡ ♥✉♠❜❡r ♦❢ ✩✷✵ ❜✐❧❧s s❤❡ ❣❡ts✳ ❝♦♥t❡♥t ✐s ❛✈❛✐❧❛❜❧❡ ♦♥❧✐♥❡ ❛t ❁❤tt♣✿✴✴❝♥①✳♦r❣✴❝♦♥t❡♥t✴♠✶✾✶✵✾✴✶✳✶✴❃✳ ❈❍❆P❚❊❘ ✶✳ ❋❯◆❈❚■❖◆❙ ✸✷ ❛✳ ❲r✐t❡ ❛ ❢✉♥❝t✐♦♥ m (k) t❤❛t t❡❧❧s ❤♦✇ ♠✉❝❤ ♠♦♥❡② ❘❛s❤♠✐ ♠❛❦❡s✱ ✐♥ ❛ ❣✐✈❡♥ ♠♦♥t❤✱ ❛s ❛ ❢✉♥❝t✐♦♥ ♦❢ t❤❡ ♥✉♠❜❡r ♦❢ ♣❡♦♣❧❡ s❤❡ ❦✐❧❧s✳ ❴❴❴❴❴❴❴❴❴❴❴❴❴❴ ❜✳ ❲r✐t❡ ❛ ❢✉♥❝t✐♦♥ b (m) t❤❛t t❡❧❧s ❤♦✇ ♠❛♥② ❜✐❧❧s ❘❛s❤♠✐ ❣❡ts✱ ✐♥ ❛ ❣✐✈❡♥ ♠♦♥t❤✱ ❛s ❛ ❢✉♥❝t✐♦♥ ♦❢ t❤❡ ♥✉♠❜❡r ♦❢ ❞♦❧❧❛rs s❤❡ ♠❛❦❡s✳ ❴❴❴❴❴❴❴❴❴❴❴❴❴❴ ❝✳ ❲r✐t❡ ❛ ❝♦♠♣♦s✐t❡ ❢✉♥❝t✐♦♥ b (m (k))❜ t❤❛t ❣✐✈❡s t❤❡ ♥✉♠❜❡r ♦❢ ❜✐❧❧s ❘❛s❤♠✐ ❣❡ts✱ ❛s ❛ ❢✉♥❝t✐♦♥ ♦❢ t❤❡ ♥✉♠❜❡r ♦❢ ♣❡♦♣❧❡ s❤❡ ❦✐❧❧s✳ ❞✳ ■❢ ❘❛s❤♠✐ ❦✐❧❧s ✺ ♠❡♥ ✐♥ ❛ ♠♦♥t❤✱ ❤♦✇ ♠❛♥② ✩✷✵ ❜✐❧❧s ❞♦❡s s❤❡ ❡❛r♥❄ ❋✐rst✱ tr❛♥s❧❛t❡ t❤✐s q✉❡st✐♦♥ ✐♥t♦ ❢✉♥❝t✐♦♥ ♥♦t❛t✐♦♥✖t❤❡♥ s♦❧✈❡ ✐t ❢♦r ❛ ♥✉♠❜❡r✳ ❡✳ ■❢ ❘❛s❤♠✐ ❡❛r♥s ✶✵✵ ✩✷✵ ❜✐❧❧s ✐♥ ❛ ♠♦♥t❤✱ ❤♦✇ ♠❛♥② ♠❡♥ ❞✐❞ s❤❡ ❦✐❧❧❄ ❋✐rst✱ tr❛♥s❧❛t❡ t❤✐s q✉❡st✐♦♥ ✐♥t♦ ❢✉♥❝t✐♦♥ ♥♦t❛t✐♦♥✖t❤❡♥ s♦❧✈❡ ✐t ❢♦r ❛ ♥✉♠❜❡r✳ ❊①❡r❝✐s❡ ✶✳✻✼ ▼❛❦❡ ✉♣ ❛ ♣r♦❜❧❡♠ ❧✐❦❡ ❡①❡r❝✐s❡s ★✷ ❛♥❞ ★✸✳ ❇❡ s✉r❡ t♦ t❛❦❡ ❛❧❧ t❤❡ r✐❣❤t st❡♣s✿ ❞❡✜♥❡ t❤❡ s❝❡♥❛r✐♦✱ ❞❡✜♥❡ ②♦✉r ✈❛r✐❛❜❧❡s ❝❧❡❛r❧②✱ ❛♥❞ t❤❡♥ s❤♦✇ t❤❡ ❢✉♥❝t✐♦♥s t❤❛t r❡❧❛t❡ t❤❡ ✈❛r✐❛❜❧❡s✳ ❚❤✐s ✐s ❥✉st ❧✐❦❡ t❤❡ ♣r♦❜❧❡♠s ✇❡ ❞✐❞ ❧❛st ✇❡❡❦✱ ❡①❝❡♣t t❤❛t ②♦✉ ❤❛✈❡ t♦ ✉s❡ t❤r❡❡ ✈❛r✐❛❜❧❡s✱ r❡❧❛t❡❞ ❜② ❛ ❝♦♠♣♦s✐t❡ ❢✉♥❝t✐♦♥✳ ❊①❡r❝✐s❡ ✶✳✻✽ f (x) = √ x+2 ✳ g (x) = x2 + x ✳ ❛✳ f (7) = ❴❴❴❴❴❴❴❴❴❴❴❴❴❴ ❜✳ g (7) = ❴❴❴❴❴❴❴❴❴❴❴❴❴❴ ❝✳ f (g (x)) =❴❴❴❴❴❴❴❴❴❴❴❴❴❴ ❞✳ f (f (x)) = ❴❴❴❴❴❴❴❴❴❴❴❴❴❴ ❡✳ g (f (x)) = ❴❴❴❴❴❴❴❴❴❴❴❴❴❴ ❢✳ g (g (x)) = ❴❴❴❴❴❴❴❴❴❴❴❴❴❴ ❣✳ f (g (3)) =❴❴❴❴❴❴❴❴❴❴❴❴❴❴ ❊①❡r❝✐s❡ ✶✳✻✾ h (x) = x − 5✳ h (i (x)) = x✳ ❈❛♥ ②♦✉ ✜♥❞ ✇❤❛t ❢✉♥❝t✐♦♥ i (x) ✐s✱ t♦ ♠❛❦❡ t❤✐s ❤❛♣♣❡♥❄ ✶✺ ✶✳✶✺ ❍♦♠❡✇♦r❦✿ ❈♦♠♣♦s✐t❡ ❋✉♥❝t✐♦♥s ❊①❡r❝✐s❡ ✶✳✼✵ ❆♥ ✐♥❝❤✇♦r♠ ✭❡①❛❝t❧② ♦♥❡ ✐♥❝❤ ❧♦♥❣✱ ♦❢ ❝♦✉rs❡✮ ✐s ❝r❛✇❧✐♥❣ ✉♣ ❛ ②❛r❞st✐❝❦ ✭❣✉❡ss ❤♦✇ ❧♦♥❣ t❤❛t ✐s❄✮✳ ❆❢t❡r t❤❡ ✜rst ❞❛②✱ t❤❡ ✐♥❝❤✇♦r♠✬s ❤❡❛❞ ✭❧❡t✬s ❥✉st ❛ss✉♠❡ t❤❛t✬s ❛t t❤❡ ❢r♦♥t✮ ✐s ❛t t❤❡ ✸✧ ♠❛r❦✳ ❆❢t❡r t❤❡ s❡❝♦♥❞ ❞❛②✱ t❤❡ ✐♥❝❤✇♦r♠✬s ❤❡❛❞ ✐s ❛t t❤❡ ✻✧ ♠❛r❦✳ ❆❢t❡r t❤❡ t❤✐r❞ ❞❛②✱ t❤❡ ✐♥❝❤✇♦r♠✬s ❤❡❛❞ ✐s ❛t t❤❡ ✾✧ ♠❛r❦✳ ▲❡t h d ❡q✉❛❧ t❤❡ ♥✉♠❜❡r ♦❢ ❞❛②s t❤❡ ✇♦r♠ ❤❛s ❜❡❡♥ ❝r❛✇❧✐♥❣✳ ✭❙♦ ❛❢t❡r t❤❡ ✜rst ❞❛②✱ ❜❡ t❤❡ ♥✉♠❜❡r ♦❢ ✐♥❝❤❡s t❤❡ ❤❡❛❞ ❤❛s ❣♦♥❡✳ ▲❡t t d = 1✳✮ ▲❡t ❜❡ t❤❡ ♣♦s✐t✐♦♥ ♦❢ t❤❡ ✇♦r♠✬s t❛✐❧✳ ❛✳ ❆❢t❡r ✶✵ ❞❛②s✱ ✇❤❡r❡ ✐s t❤❡ ✐♥❝❤✇♦r♠✬s ❤❡❛❞❄ ❴❴❴❴❴❴❴❴❴❴❴❴❴❴ ❜✳ ■ts t❛✐❧❄ ❴❴❴❴❴❴❴❴❴❴❴❴❴❴ ❝✳ ❲r✐t❡ ❛ ❢✉♥❝t✐♦♥ h (d) t❤❛t ❣✐✈❡s t❤❡ ♥✉♠❜❡r ♦❢ ✐♥❝❤❡s t❤❡ ❤❡❛❞ ❤❛s tr❛✈❡❧❡❞✱ ❛s ❛ ❢✉♥❝t✐♦♥ ♦❢ ❤♦✇ ♠❛♥② ❞❛②s t❤❡ ✇♦r♠ ❤❛s ❜❡❡♥ tr❛✈❡❧✐♥❣✳ ❴❴❴❴❴❴❴❴❴❴❴❴❴❴ ❞✳ ❲r✐t❡ ❛ ❢✉♥❝t✐♦♥ t (h) t❤❛t ❣✐✈❡s t❤❡ ♣♦s✐t✐♦♥ ♦❢ t❤❡ t❛✐❧✱ ❛s ❛ ❢✉♥❝t✐♦♥ ♦❢ t❤❡ ♣♦s✐t✐♦♥ ♦❢ t❤❡ ❤❡❛❞✳ ❴❴❴❴❴❴❴❴❴❴❴❴❴❴ ❡✳ ◆♦✇ ✇r✐t❡ t❤❡ ❝♦♠♣♦s✐t❡ ❢✉♥❝t✐♦♥ t (h (d)) t❤❛t ❣✐✈❡s t❤❡ ♣♦s✐t✐♦♥ ♦❢ t❤❡ t❛✐❧✱ ❛s ❛ ❢✉♥❝t✐♦♥ ♦❢ t❤❡ ♥✉♠❜❡r ♦❢ ❞❛②s t❤❡ ✇♦r♠ ❤❛s ❜❡❡♥ tr❛✈❡❧✐♥❣✳ ✶✺ ❚❤✐s ❝♦♥t❡♥t ✐s ❛✈❛✐❧❛❜❧❡ ♦♥❧✐♥❡ ❛t ❁❤tt♣✿✴✴❝♥①✳♦r❣✴❝♦♥t❡♥t✴♠✶✾✶✵✼✴✶✳✶✴❃✳ ✸✸ ❊①❡r❝✐s❡ ✶✳✼✶ ➣ ❚❤❡ ♣r✐❝❡ ♦❢ ❣❛s st❛rt❡❞ ♦✉t ❛t ✶✵✵ ✴❣❛❧❧♦♥ ♦♥ t❤❡ ✶st ♦❢ t❤❡ ♠♦♥t❤✳ ❊✈❡r② ❞❛② s✐♥❝❡ t❤❡♥✱ ✐t ❤❛s ➣ ❣♦♥❡ ✉♣ ✷ ✴❣❛❧❧♦♥✳ ▼② ❝❛r t❛❦❡s ✶✵ ❣❛❧❧♦♥s ♦❢ ❣❛s✳ ✭❆s ②♦✉ ♠✐❣❤t ❤❛✈❡ ❣✉❡ss❡❞✱ t❤❡s❡ ♥✉♠❜❡rs ❛r❡ ❛❧❧ ✜❝t✐♦♥❛❧✳✮ ▲❡t d ❡q✉❛❧ t❤❡ ❞❛t❡ ✭s♦ t❤❡ ✶st ♦❢ t❤❡ ♠♦♥t❤ ✐s ✶✱ ❛♥❞ s♦ ♦♥✮✳ ▲❡t ♦❢ ❣❛s✱ ✐♥ ❝❡♥ts✳ ▲❡t c g ❡q✉❛❧ t❤❡ ♣r✐❝❡ ♦❢ ❛ ❣❛❧❧♦♥ ❡q✉❛❧ t❤❡ t♦t❛❧ ♣r✐❝❡ r❡q✉✐r❡❞ t♦ ✜❧❧ ✉♣ ♠② ❝❛r✱ ✐♥ ❝❡♥ts✳ ❛✳ ❲r✐t❡ ❛ ❢✉♥❝t✐♦♥ g (d) t❤❛t ❣✐✈❡s t❤❡ ♣r✐❝❡ ♦❢ ❣❛s ♦♥ ❛♥② ❣✐✈❡♥ ❞❛② ♦❢ t❤❡ ♠♦♥t❤✳ ❴❴❴❴❴❴❴❴❴❴❴❴❴❴ ❜✳ ❲r✐t❡ ❛ ❢✉♥❝t✐♦♥ c (g) t❤❛t t❡❧❧s ❤♦✇ ♠✉❝❤ ♠♦♥❡② ✐t t❛❦❡s t♦ ✜❧❧ ✉♣ ♠② ❝❛r✱ ❛s ❛ ❢✉♥❝t✐♦♥ ♦❢ t❤❡ ♣r✐❝❡ ♦❢ ❛ ❣❛❧❧♦♥ ♦❢ ❣❛s✳ ❴❴❴❴❴❴❴❴❴❴❴❴❴❴ ❝✳ ❲r✐t❡ ❛ ❝♦♠♣♦s✐t❡ ❢✉♥❝t✐♦♥ c (g (d)) t❤❛t ❣✐✈❡s t❤❡ ❝♦st ♦❢ ✜❧❧✐♥❣ ✉♣ ♠② ❝❛r ♦♥ ❛♥② ❣✐✈❡♥ ❞❛② ♦❢ t❤❡ ♠♦♥t❤✳ ❞✳ ❍♦✇ ♠✉❝❤ ♠♦♥❡② ❞♦❡s ✐t t❛❦❡ t♦ ✜❧❧ ✉♣ ♠② ❝❛r ♦♥ t❤❡ ✶✶t❤ ♦❢ t❤❡ ♠♦♥t❤❄ ❋✐rst✱ tr❛♥s❧❛t❡ t❤✐s q✉❡st✐♦♥ ✐♥t♦ ❢✉♥❝t✐♦♥ ♥♦t❛t✐♦♥✖t❤❡♥ s♦❧✈❡ ✐t ❢♦r ❛ ♥✉♠❜❡r✳ ➣ ❡✳ ❖♥ ✇❤❛t ❞❛② ❞♦❡s ✐t ❝♦st ✶✱✵✹✵ ✭♦t❤❡r✇✐s❡ ❦♥♦✇♥ ❛s ✩✶✵✳✹✵✮ t♦ ✜❧❧ ✉♣ ♠② ❝❛r❄ ❋✐rst✱ tr❛♥s❧❛t❡ t❤✐s q✉❡st✐♦♥ ✐♥t♦ ❢✉♥❝t✐♦♥ ♥♦t❛t✐♦♥✖t❤❡♥ s♦❧✈❡ ✐t ❢♦r ❛ ♥✉♠❜❡r✳ ❊①❡r❝✐s❡ ✶✳✼✷ ▼❛❦❡ ✉♣ ❛ ♣r♦❜❧❡♠ ❧✐❦❡ ♥✉♠❜❡rs ✶ ❛♥❞ ✷✳ ❇❡ s✉r❡ t♦ t❛❦❡ ❛❧❧ t❤❡ r✐❣❤t st❡♣s✿ ❞❡✜♥❡ t❤❡ s❝❡♥❛r✐♦✱ ❞❡✜♥❡ ②♦✉r ✈❛r✐❛❜❧❡s ❝❧❡❛r❧②✱ ❛♥❞ t❤❡♥ s❤♦✇ t❤❡ ✭❝♦♠♣♦s✐t❡✮ ❢✉♥❝t✐♦♥s t❤❛t r❡❧❛t❡ t❤❡ ✈❛r✐❛❜❧❡s✳ ❊①❡r❝✐s❡ ✶✳✼✸ f (x) = x x2 +3x+4 ✳ ❋✐♥❞ f (g (x)) ✐❢.

P❚❊❘ ✶✳ ❋❯◆❈❚■❖◆❙ ✷✵ ❜❛rs ✢♦❛t t❤r♦✉❣❤ t❤❡ ❛✐r ❛♥❞ ❧❛♥❞ ♦♥ t❤❡ t❡❛❝❤❡r✬s ❞❡s❦✳ ❆♥❞✱ ❛s q✉✐❝❦❧② ❛s s❤❡ ❛♣♣❡❛r❡❞✱ ❙❛❧❧② ✐s ❣♦♥❡ t♦ ❞♦ ♠♦r❡ ❣♦♦❞ ✐♥ t❤❡ ✇♦r❧❞✳ ▲❡t s r❡♣r❡s❡♥t t❤❡ ♥✉♠❜❡r ♦❢ st✉❞❡♥ts ✐♥ t❤❡ ❝❧❛ss✱ ❛♥❞ c r❡♣r❡s❡♥t t❤❡ t♦t❛❧ ♥✉♠❜❡r ♦❢ ❝❛♥❞② ❜❛rs ❞✐str✐❜✉t❡❞✳ ❚✇♦ ❢♦r ❡❛❝❤ st✉❞❡♥t✱ ❛♥❞ ✜✈❡ ❢♦r t❤❡ t❡❛❝❤❡r✳ ❛✳ ❲r✐t❡ ❛ ❢✉♥❝t✐♦♥ t♦ s❤♦✇ ❤♦✇ ♠❛♥② ❝❛♥❞② ❜❛rs ❙❛❧❧② ❣❛✈❡ ♦✉t✱ ❛s ❛ ❢✉♥❝t✐♦♥ ♦❢ t❤❡ ♥✉♠❜❡r ♦❢ st✉❞❡♥ts✳ c (s) =❴❴❴❴❴❴ ❜✳ ❯s❡ t❤❛t ❢✉♥❝t✐♦♥ t♦ ❛♥s✇❡r t❤❡ q✉❡st✐♦♥✿ ✐❢ t❤❡r❡ ✇❡r❡ ✷✵ st✉❞❡♥ts ✐♥ t❤❡ ❝❧❛ssr♦♦♠✱ ❤♦✇ ♠❛♥② ❝❛♥❞② ❜❛rs ✇❡r❡ ❞✐str✐❜✉t❡❞❄ ❋✐rst r❡♣r❡s❡♥t t❤❡ q✉❡st✐♦♥ ✐♥ ❢✉♥❝t✐♦♥❛❧ ♥♦t❛t✐♦♥✖t❤❡♥ ❛♥s✇❡r ✐t✳ ❴❴❴❴❴❴ ❝✳ ◆♦✇ ✉s❡ t❤❡ s❛♠❡ ❢✉♥❝t✐♦♥ t♦ ❛♥s✇❡r t❤❡ q✉❡st✐♦♥✿ ✐❢ ❙❛❧❧② ❞✐str✐❜✉t❡❞ ✸✺ ❝❛♥❞② ❜❛rs✱ ❤♦✇ ♠❛♥② st✉❞❡♥ts ✇❡r❡ ✐♥ t❤❡ ❝❧❛ss❄ ❋✐rst r❡♣r❡s❡♥t t❤❡ q✉❡st✐♦♥ ✐♥ ❢✉♥❝t✐♦♥❛❧ ♥♦t❛t✐♦♥✖t❤❡♥ ❛♥s✇❡r ✐t✳ ❴❴❴❴❴❴ ❊①❡r❝✐s❡ ✶✳✹✵ ❚❤❡ ❢✉♥❝t✐♦♥ f (x) = ✐s ✏❙✉❜tr❛❝t t❤r❡❡✱ t❤❡♥ t❛❦❡ t❤❡ sq✉❛r❡ r♦♦t✳✑ ❛✳ ❊①♣r❡ss t❤✐s ❢✉♥❝t✐♦♥ ❛❧❣❡❜r❛✐❝❛❧❧②✱ ✐♥st❡❛❞ ♦❢ ✐♥ ✇♦r❞s✿ f (x) =❴❴❴❴❴❴ ❜✳ ●✐✈❡ ❛♥② t❤r❡❡ ♣♦✐♥ts t❤❛t ❝♦✉❧❞ ❜❡ ❣❡♥❡r❛t❡❞ ❜② t❤✐s ❢✉♥❝t✐♦♥✿❴❴❴❴❴❴ ❝✳ ❲❤❛t x✲✈❛❧✉❡s ❛r❡ ✐♥ t❤❡ ❞♦♠❛✐♥ ♦❢ t❤✐s ❢✉♥❝t✐♦♥❄❴❴❴❴❴❴ ❊①❡r❝✐s❡ ✶✳✹✶ ❚❤❡ ❢✉♥❝t✐♦♥ y (x) ✐s ✏●✐✈❡♥ ❛♥② ♥✉♠❜❡r✱ r❡t✉r♥ ✻✳✑ ❛✳ ❊①♣r❡ss t❤✐s ❢✉♥❝t✐♦♥ ❛❧❣❡❜r❛✐❝❛❧❧②✱ ✐♥st❡❛❞ ♦❢ ✐♥ ✇♦r❞s✿ y (x) =❴❴❴❴❴❴ ❜✳ ●✐✈❡ ❛♥② t❤r❡❡ ♣♦✐♥ts t❤❛t ❝♦✉❧❞ ❜❡ ❣❡♥❡r❛t❡❞ ❜② t❤✐s ❢✉♥❝t✐♦♥✿❴❴❴❴❴❴ ❝✳ ❲❤❛t x✲✈❛❧✉❡s ❛r❡ ✐♥ t❤❡ ❞♦♠❛✐♥ ♦❢ t❤✐s ❢✉♥❝t✐♦♥❄❴❴❴❴❴❴ ❊①❡r❝✐s❡ ✶✳✹✷ z (x) = x2 − 6x + 9 ❛✳ z (−1) =❴❴❴❴❴❴ ❜✳ z (0) = ❴❴❴❴❴❴ ❝✳ z (1) =❴❴❴❴❴❴ ❞✳ z (3) =❴❴❴❴❴❴ ❡✳ z (x + 2) =❴❴❴❴❴❴ ❢✳ z (z (x)) =❴❴❴❴❴❴ ❊①❡r❝✐s❡ ✶✳✹✸ ❖❢ t❤❡ ❢♦❧❧♦✇✐♥❣ s❡ts ♦❢ ♥✉♠❜❡rs✱ ✐♥❞✐❝❛t❡ ✇❤✐❝❤ ♦♥❡s ❝♦✉❧❞ ♣♦ss✐❜❧② ❤❛✈❡ ❜❡❡♥ ❣❡♥❡r❛t❡❞ ❜② ❛ ❢✉♥❝t✐♦♥✳ ❆❧❧ ■ ♥❡❡❞ ✐s ❛ ✏❨❡s✑ ♦r ✏◆♦✑✖②♦✉ ❞♦♥✬t ❤❛✈❡ t♦ t❡❧❧ ♠❡ t❤❡ ❢✉♥❝t✐♦♥✦ ✭❇✉t ❣♦ ❛❤❡❛❞ ❛♥❞ ❞♦✱ ✐❢ ②♦✉ ✇❛♥t t♦.

P❚❊❘ ✶✳ ❋❯◆❈❚■❖◆❙ ✷✵ ❜❛rs ✢♦❛t t❤r♦✉❣❤ t❤❡ ❛✐r ❛♥❞ ❧❛♥❞ ♦♥ t❤❡ t❡❛❝❤❡r✬s ❞❡s❦✳ ❆♥❞✱ ❛s q✉✐❝❦❧② ❛s s❤❡ ❛♣♣❡❛r❡❞✱ ❙❛❧❧② ✐s ❣♦♥❡ t♦ ❞♦ ♠♦r❡ ❣♦♦❞ ✐♥ t❤❡ ✇♦r❧❞✳ ▲❡t s r❡♣r❡s❡♥t t❤❡ ♥✉♠❜❡r ♦❢ st✉❞❡♥ts ✐♥ t❤❡ ❝❧❛ss✱ ❛♥❞ c r❡♣r❡s❡♥t t❤❡ t♦t❛❧ ♥✉♠❜❡r ♦❢ ❝❛♥❞② ❜❛rs ❞✐str✐❜✉t❡❞✳ ❚✇♦ ❢♦r ❡❛❝❤ st✉❞❡♥t✱ ❛♥❞ ✜✈❡ ❢♦r t❤❡ t❡❛❝❤❡r✳ ❛✳ ❲r✐t❡ ❛ ❢✉♥❝t✐♦♥ t♦ s❤♦✇ ❤♦✇ ♠❛♥② ❝❛♥❞② ❜❛rs ❙❛❧❧② ❣❛✈❡ ♦✉t✱ ❛s ❛ ❢✉♥❝t✐♦♥ ♦❢ t❤❡ ♥✉♠❜❡r ♦❢ st✉❞❡♥ts✳ c (s) =❴❴❴❴❴❴ ❜✳ ❯s❡ t❤❛t ❢✉♥❝t✐♦♥ t♦ ❛♥s✇❡r t❤❡ q✉❡st✐♦♥✿ ✐❢ t❤❡r❡ ✇❡r❡ ✷✵ st✉❞❡♥ts ✐♥ t❤❡ ❝❧❛ssr♦♦♠✱ ❤♦✇ ♠❛♥② ❝❛♥❞② ❜❛rs ✇❡r❡ ❞✐str✐❜✉t❡❞❄ ❋✐rst r❡♣r❡s❡♥t t❤❡ q✉❡st✐♦♥ ✐♥ ❢✉♥❝t✐♦♥❛❧ ♥♦t❛t✐♦♥✖t❤❡♥ ❛♥s✇❡r ✐t✳ ❴❴❴❴❴❴ ❝✳ ◆♦✇ ✉s❡ t❤❡ s❛♠❡ ❢✉♥❝t✐♦♥ t♦ ❛♥s✇❡r t❤❡ q✉❡st✐♦♥✿ ✐❢ ❙❛❧❧② ❞✐str✐❜✉t❡❞ ✸✺ ❝❛♥❞② ❜❛rs✱ ❤♦✇ ♠❛♥② st✉❞❡♥ts ✇❡r❡ ✐♥ t❤❡ ❝❧❛ss❄ ❋✐rst r❡♣r❡s❡♥t t❤❡ q✉❡st✐♦♥ ✐♥ ❢✉♥❝t✐♦♥❛❧ ♥♦t❛t✐♦♥✖t❤❡♥ ❛♥s✇❡r ✐t✳ ❴❴❴❴❴❴ ❊①❡r❝✐s❡ ✶✳✹✵ ❚❤❡ ❢✉♥❝t✐♦♥ f (x) = ✐s ✏❙✉❜tr❛❝t t❤r❡❡✱ t❤❡♥ t❛❦❡ t❤❡ sq✉❛r❡ r♦♦t✳✑ ❛✳ ❊①♣r❡ss t❤✐s ❢✉♥❝t✐♦♥ ❛❧❣❡❜r❛✐❝❛❧❧②✱ ✐♥st❡❛❞ ♦❢ ✐♥ ✇♦r❞s✿ f (x) =❴❴❴❴❴❴ ❜✳ ●✐✈❡ ❛♥② t❤r❡❡ ♣♦✐♥ts t❤❛t ❝♦✉❧❞ ❜❡ ❣❡♥❡r❛t❡❞ ❜② t❤✐s ❢✉♥❝t✐♦♥✿❴❴❴❴❴❴ ❝✳ ❲❤❛t x✲✈❛❧✉❡s ❛r❡ ✐♥ t❤❡ ❞♦♠❛✐♥ ♦❢ t❤✐s ❢✉♥❝t✐♦♥❄❴❴❴❴❴❴ ❊①❡r❝✐s❡ ✶✳✹✶ ❚❤❡ ❢✉♥❝t✐♦♥ y (x) ✐s ✏●✐✈❡♥ ❛♥② ♥✉♠❜❡r✱ r❡t✉r♥ ✻✳✑ ❛✳ ❊①♣r❡ss t❤✐s ❢✉♥❝t✐♦♥ ❛❧❣❡❜r❛✐❝❛❧❧②✱ ✐♥st❡❛❞ ♦❢ ✐♥ ✇♦r❞s✿ y (x) =❴❴❴❴❴❴ ❜✳ ●✐✈❡ ❛♥② t❤r❡❡ ♣♦✐♥ts t❤❛t ❝♦✉❧❞ ❜❡ ❣❡♥❡r❛t❡❞ ❜② t❤✐s ❢✉♥❝t✐♦♥✿❴❴❴❴❴❴ ❝✳ ❲❤❛t x✲✈❛❧✉❡s ❛r❡ ✐♥ t❤❡ ❞♦♠❛✐♥ ♦❢ t❤✐s ❢✉♥❝t✐♦♥❄❴❴❴❴❴❴ ❊①❡r❝✐s❡ ✶✳✹✷ z (x) = x2 − 6x + 9 ❛✳ z (−1) =❴❴❴❴❴❴ ❜✳ z (0) = ❴❴❴❴❴❴ ❝✳ z (1) =❴❴❴❴❴❴ ❞✳ z (3) =❴❴❴❴❴❴ ❡✳ z (x + 2) =❴❴❴❴❴❴ ❢✳ z (z (x)) =❴❴❴❴❴❴ ❊①❡r❝✐s❡ ✶✳✹✸ ❖❢ t❤❡ ❢♦❧❧♦✇✐♥❣ s❡ts ♦❢ ♥✉♠❜❡rs✱ ✐♥❞✐❝❛t❡ ✇❤✐❝❤ ♦♥❡s ❝♦✉❧❞ ♣♦ss✐❜❧② ❤❛✈❡ ❜❡❡♥ ❣❡♥❡r❛t❡❞ ❜② ❛ ❢✉♥❝t✐♦♥✳ ❆❧❧ ■ ♥❡❡❞ ✐s ❛ ✏❨❡s✑ ♦r ✏◆♦✑✖②♦✉ ❞♦♥✬t ❤❛✈❡ t♦ t❡❧❧ ♠❡ t❤❡ ❢✉♥❝t✐♦♥✦ ✭❇✉t ❣♦ ❛❤❡❛❞ ❛♥❞ ❞♦✱ ✐❢ ②♦✉ ✇❛♥t t♦.

Download PDF sample

Advanced Algebra II: Activities and Homework by KennyFelder


by Robert
4.2

Rated 4.51 of 5 – based on 41 votes